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An Improved Technique in Porosity 
Prediction: A Neural Network Approach 

Patrick M. Wong, Tam& D. Gedeon, and Ian J. Taggart 

Abstruct- Genetic reservoir characterization is important in 
developing, for a given petroleum reservoir, an improved un- 
derstanding of the total amount and fluid flow properties of 
hydrocarbon reserves. Application of genetic concepts involves 
the classification of well log data into Merent lithofacies groups, 
followed by a facies-by-facies description of rock properties such 
as porosity and permeability. This work contrasts the genetic 
and nongenetic approaches in predicting porosity values of an oil 
well using backpropagation neural network methods. The per- 
formance of both methods are critically evaluated. A systematic 
technique to optimise the network configuration using weight 
visualization curves is proposed, thereby enabling the amount of 
training time to be signi6cantly reduced. In the example problem, 
the genetic approach provides superior porosity estimates to that 
based on a nongenetic approach. 

I. INTRODUCTION 

ANY forms of heterogeneity in rock properties, such as M porosity and permeability, are present in clastic reser- 
. voirs. Understanding the form and spatial distribution of these 
heterogeneities is fundamental to the successful characteriza- 
tion of petroleum reservoirs [ 131. Porosity and permeability are 
the two fundamental rock properties which relate to the amount 
of fluid contained in a reservoir and its ability to flow when 
subjected to applied pressure gradients. While fluid saturation 
is an equally important parameter, its estimation is beyond the 
scope of this paper. 

A. Genetic Reservoir Characterization 

There are two broad ways in which geologists, petro- 
physicists and engineers approach the problem of reservoir 
characterization. These two methods can be described as 
nongenetic and genetic approaches [17]. The nongenetic ap- 
proach is the older, more established process of reservoir 
characterization. The genetic approach is a newer concept 
which seeks to identify and treat each dominant lithofacies 
group separately. Note that our use of “genetic” in this paper 
refers to the geological classification of rocks, and is in no 
way related to the different meaning of “genetic” algorithm 
used in the artificial intelligence literature. 

The genetic approach to reservoir characterization empha- 
sises the importance of lithofacies in hydraulic properties, such 
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as facies-specific relationship between porosity and permeabil- 
ity [15], [25] and therefore each lithofacies must be treated in- 
dividually. Identifying and mapping these lithohydraulic flow 
units is the first step in a successful reservoir characterization 
process. In the genetic approach, rock types are classified into 
the same lithohydraulic category (or more simply lithofacies) 
according to following criteria: 1) similar textural features 
(grain size and roundness), 2) similar diagenetic histories 
(mineralogy and pore space changes with time), and 3) similar 
petrophysical properties (such as porosity and wireline log 
response). 

The above three criteria means that sedimentary features 
alone, should not be used in selecting lithofacies. Once se- 
lected, different lithofacies should readily be distinguished by 
possessing a differing pore throat geometry and connectivity. 
For example, in a given sandstone reservoir, the origin de- 
position may have caused localised sorting and orientation of 
grains into fine and coarse grain structures which may have 
similar porosity but widely different permeabilities. In addi- 
tion, different amounts of calcite, a carbonate, precipitation 
may have occurred (cementing sand grains together). Thus 
four lithofacies may exist: fine and coarse sandstone, with and 
without, carbonate cementation. A nongenetic approach would 
treat all the sandstone as one unit thus ignoring for example, 
specific porosity-permeability relationships which may exist 
for each lithofacies. 

The biggest difficulty faced with adopting a genetic ap- 
proach to reservoir characterization is the reliable identification 
of lithofacies from available data in a reservoir under con- 
sideration. Generally, suitable outcrop and/or extensive core 
information is not available. Instead, the geologist usually has 
core data only in a few selected and isolated wells, and must in- 
stead rely on available wireline log data to distinguish different 
facies groups. From the selected core data, a set of lithofacies 
can be identified based on the criteria given above. These litho- 
facies must be linked to the larger set of wireline log signatures 
in such a way that the lithofacies group can be predicted on 
the basis of the log signature alone. Because of the inherent 
difficulty in this step, and the fact that it overlaps the separate 
disciplines of geology, pattern recognition, petrophysics and 
ultimately reservoir engineering, there are only a handful of 
documented examples of quantitative genetic approaches to 
reservoir characterization in the literature [ 171, [22], [261. 

B. Previous Work 

The concept of genetic reservoir characterization is rela- 
tively new. Its acceptance has perhaps been delayed by the 
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availability of suitable computational and statistical tools. 
LITHO [7] and FACIOLOG [28] represent examples, which 
employed clustering and principle component methods to 
classify wireline log data into different rock types. In these 
papers, the rock types were not necessarily lithofacies. The 
biggest drawback with these methods was the need to devise 
suitable cluster association rules (to reduce the number of 
clusters) and provision of logic to classify “between clusters” 
entries. Identification of outliers invariably occurred in tran- 
sition regions between lithofacies and resulted in the concept 
of electrofacies [23]. A given lithofacies may have several 
associated electrofacies depending on the presence of nearby 
boundaries and transitions. While both of these methods were 
capable of good performance, the training process required 
to identify unique clusters is usually performed with consid- 
erable manual intervention and is considered cumbersome. 
Ideally the classification algorithm should be self training. 
The supervised classification method of discriminant analysis 
is one such method, and has been used in a genetic context 
with the introduction of electrofacies [ 171. The disadvantage 
with discriminant analysis methods is however, the ease with 
which the results can be further processed into facies specific 
porosity and permeability data. It is the ability of neural nets 
to be readily configured to perform supervised classification, 
as well as performing nonlinear regression on inputs and/or 
intermediate results which make them attractive to genetic 
reservoir classification. Furthermore, neural network methods 
can form more complex decision boundaries which do not 
necessarily the redundancies introduced by electrofacies. 

A supervised neural network technique has been widely 
used in lithofacies classification [l], [ 5 ] ,  [8], [20]. Supervised 
learning requires training data which has been labelled with 
the desired outcome for each pattern of inputs. In this case, 
the well log data is labelled with the lithofacies group names. 
By selecting a suitable number of log responses to a given 
reservoir lithofacies, this technique can be trained to recognise, 
and predict, a given lithofacies from an input set of wireline log 
readings. Unlike traditional statistical classification techniques, 
such as discriminant analysis, neural networks can output 
both discrete (lithofacies) and continuous (porosity) data. 
Predictions of continuous values, such as total porosity and 
grain density [2] and permeability [19], were previously at- 
tempted, however, none of these utilised the genetic approach 
to reservoir characterization. 

This work contrasts the application of neural networks in 
both genetic and nongenetic approaches for the purpose of 
porosity predictions. Whilst the application of neural network 
theory to wireline log analysis is not new, the particular 
contribution made by this work is in the use of neural network 
methods for both lithofacies and porosity predictions. This is 
an area which, to the best of our knowledge, has received 
little attention. 

The following sections will first review the basic properties 
of neural networks. Then, a systematic approach in optimizing 
the network configuration using weight visualization curves 
will be introduced, followed by a brief discussion on develop- 
ing the training data set. In the last section, we will compare 
the performance of the genetic and nongenetic methods to 

supervised porosity predictions from a suite of wireline logs. 
Data comes from a real reservoir where one well provides the 
core data used in the training phase of both schemes. Both 
methods are applied to a second well, where predictions of 
porosity values are compared to core data withheld from the 
training phase. 

11. NEURAL NETWORK 

An artificial neural network, or simply a neural net, is a 
computer model which attempts to mimic some parts of the 
workings of the human brain [4]. It can learn from examples 
or experience, and is extremely useful in solving pattern 
classification and mapping problems. 

The training, or learning, is an essential part in using neural 
nets. This process requires training patterns which consist of a 
number of input signals paired with target signals. The inputs 
are presented to the network and the corresponding outputs are 
calculated, and the network parameters are modified to reduce 
the error. The aim of training is to minimise the differences 
between the output and target values (i.e., errors) for all the 
training pairs. By training, a set of parameters are produced 
and can be used for classifying data or predicting property 
values in situations where the actual output is unknown. 
Note, however, that this set of parameters are problem-specific 
because each training data set results in a unique neural net. 

A.  Basic Architecture 

A typical neural net is composed of three kinds of layers: 
input, middle (or hidden) and output layers. The input layer 
nodes are different to other nodes as they only receive input 
signals from the outside world and no mathematical operations 
are performed. These inputs layer nodes are connected, via 
weighted links, to every node in the middle layer. Unlike 
the input and output layers, the number of middle layers 
can be any positive number (as well as zero). Recent studies 
show that one middle layer is generally sufficient to solve 
complex problems if enough nodes are available [14], [161, 
and hence this study was only limited to one middle layer 
structure (see later sections). The decision of how many nodes 
should be present in the middle layer, however, is difficult 
to determine a priori and is usually determined by trial and 
error [3], [8]. The number of nodes present in input and 
output layers is usually more straightforward and is usually 
determined by the particular problem domain. Output layer 
nodes receive output signals from middle layer nodes and 
therefore provide responses to a given set of input signals. Fig. 
1 shows a schematic diagram of a simple network architecture 
which consists of three layers. The input layer is composed of 
two nodes, and the middle and output layers contain three 
nodes. This can be described as the 2-3-3 configuration. 
Mathematically speaking, this neural computation involves a 
transformation of an input vector with two components (XI, 
X2) into an output vector with three components (Yl ,  Y2, 
and Y3). The magnitude of the output vector depends on the 
weights on all connections which are represented by the lines 
as shown in the figure. Bias nodes are usually included for 
faster convergence and better decision boundaries [6]. The 
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Fig. 1 .  Schematic diagram of a three-layer neural network. 

weights on these nodes are treated the same as the others, and 
the input activation values of these connections are always 
equal to one. 

B. Learning Algorithm 

The backpropagation (BP) algorithm is the most widely 
used learning procedure for supervised neural nets. Before 
beginning training, some small random numbers are usu- 
ally used to initialise each weight on each connection. BP 
requires preexisting training patterns, and involves a forward- 
propagation step followed by a backward-propagation step. 
The forward-propagation step begins by sending the input 
signals through the nodes of each layer. A nonlinear function, 
called the sigmoid function, is usually used at each node for 
the transformation of the incoming signals to an output signal. 
This process repeats until the signals reach the output layer and 
an output vector is calculated. The backward-propagation step 
calculates the error vector by comparing the calculated and 
target outputs. New sets of weights are iteratively calculated, 
by modifying the existing weights, based on these error values 
until a minimum overall error, or global error, is obtained. The 
root-mean-square error (RMSE) is usually used as a measure 
of the global error [6] which can be defined as 

where np is the number of input/output pairs making up the 
training patterns, no is the number of nodes in the output layer, 
x and y are the output and target signals respectively. Details 
of the BP algorithm can be found in [4], [21]. 

In order to improve the generalization capabilities of the 
net, a test or validation data set (i.e.. a set of known input- 
output pairings which were withheld from the training set) is 
usually used to stop training before generalization degrades. 
Performance of the trained network can be evaluated by 
some simple statistical functions such as recognition rate 
(i.e., percentage of the total number of correctly classified 

A 

Fig. 2. WVcurves for 2-3-3 configuration in Fig. 1. Pattems of weights 
connecting different (a) input and middle layer units, (b) middle and output 
layer units. 

outcomes over the number of sample points, or simply %Reco) 
and mean-square-error (MSE). If the error value on the test 
data set begins to increase, training is halted and the results 
are examined to determine whether they are acceptable. If 
the results are unacceptable, then it is possible to retrain 
the network, by either modifying some network parameters 
(e.g.. the seed value for the random number generator, and 
the number of nodes in the middle layer), or increasing 
or decreasing the variations present in the training patterns. 
Once an acceptable error value is obtained during the test 
stage, the network is ready for solving real problems, such as 
classification of input signals (e.g., well log data) into discrete 
classes (e.g., lithofacies) and prediction of property values 
(e.g., porosity and permeability) using some input signals (e.g., 
well log data). 

111. TRAINING SET DEVELOPMENT 
A major drawback of the neural net approach is the problem 

of convergence. Convergence in the BP algorithm means that 
the global minimum (smallest error) of the error function is 
obtained in a reasonable amount of iterations, or epochs. The 
iterative process may require long training times of the order 
of several hundreds of thousands of iterations. Sometimes the 
network may get stuck in a local minimum during training 
which means that the network has failed to learn acceptably 
and gives large errors. Developing faster learning algorithms 
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Fig. 3. Training patterns (65 data points) at Well A. Facies 1 is Mudstone, 
Facies 2 is Sandy Mudstone, Facies 3 is Sandstone, and Facies 4 is Carbonate 
Cemented Bed. 
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WV-curves for 5-5-4 configuration. Pattems of weights connecting 

and local minimum detection and avoidance methods are 
active areas of research on neural nets 1111, [121, [29], [30]. 
Careful examination of training data is crucial before the 
trainino n r n r p c c  ctirtc Cptc nf traininn nattomr xsrhirh  /In nnt 

adequately distinguish between different facies groups will 
invariably result in either slow convergence or nonconver- 
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Fig. 5. WV-curves for 3 - 4 4  configuration (combining inputs). Patterns of 
weights connecting different (a) input and middle layer units, (b) middle and 
output layer units. 

gence. Developing training data usually includes the choice 
of training variables and their representative samples and data 
normalization. Details of training patterns development can be 
found in [91, [lo], [241. 

Lithofacies information extracted from core samples is 
usually used as the training data set in classification of well log 
signals because of its high reliability and accuracy compared 
to well logs. After depth-matching core and log data, the 
corresponding well log signals (e.g., gamma ray, sonic travel 
time and bulk density) can be read for each core sample, and 
removal of outliers is usually done. The input data is then 
normalised in the interval (0, 1). The output data, however, 
is practically normalised in the interval (0.1, 0.9) for faster 
convergence [9]. There are no restrictions on how to normalise 
the data. The whole data set (i.e., the training and validation 
data) must, however, be normalised in the same manner. 

Not all the variables display the distinct characteristics 
of each lithofacies. The most common selection rule is to 
choose the log variables with strong discriminating power of 
lithofacies. If the less selective variables are also included in 
the training set, the amount of training time required may 
increase. The advantage of applying the genetic approach (the 
use of lithofacies information in predicting porosity values) 
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Fig. 6. Wv-curves for 3 4 4  configuration (discarding inputs). (a) Pattems 
of weights connecting different (a) input and middle layer units, (b) middle 
and output layer units. 

is to provide additional information allowing the network to 
learn the separation of patterns in the input log data, and hence 
training time will be significantly reduced with high prediction 
accuracy. Also, the generation of nonlinear input variables 
[18], [27] may also reduce training time and avoid the use 
of more than one middle layer in some cases. 

IV. WEIGHT VISUALIZATION CURVES 

One of the major difficulties during neural net learning is 
the choice of the network parameters. This usually includes 
the weight initialization, the choice of input variables and the 
number of middle layer nodes. The choice of input variables 
is usually straightforward. However, if nonlinear inputs, such 
as X12,X22 or X1 . X2 in Fig. 1 (not shown), are used, 
the optimum choices may be difficult. The number of middle 
layer nodes are also important. If too few nodes are present 
in the middle layer, the network will fail to learn. On the 
other hand, if too many nodes are used, the network will 
memorise the training data and fail to generalise the data 
trend. Therefore, techniques to interpret the trained network 
are essential. Weight visualization curves (WV-curves) have 
been used to represent the spectral character of the training 
data, and the possible use of these curves in feature selection 
has been discussed in [3]. However, the use of these curves in 
solving these problems have not been previously presented. 

Fig. 7. Relationships of different experiments. 

In this study, the presentation style of WV-curves are 
modified, and their application to select the number of input 
and middle layer nodes are also discussed. The weight values 
are used to calculate the average contribution of a node in a 
layer to a node in the next layer 

where P;j is the average contribution of a node i in a layer to 
a node j in the next layer, W is the weight on the connection, 
and n is the number of nodes in the next layer. 

The meaning of (2) can be easily visualised with an exam- 
ple. For the 2-3-3 configuration (see Fig. l), the WV-curves 
are shown in Fig. 2. In Fig. 2(a), the horizontal axis shows 
the node number in the middle layer, and the vertical axis (not 
shown) represents the size of the actual weights connecting 
each of these nodes to the two input nodes and the bias. 
The horizontal axis is located at the zero weight value level. 
For example, if j represents the node 2 (see horizontal axis), 
then Pij is the highest for input node X1 because the weight 
connecting X1 node and node 2 in middle layer is the largest. 
In order words, X1 has the largest contribution to node 2. 
Similarly, node 1 in the middle layer contributes more to 
output node Y3 compared to node 3 [Fig. 2(b)]. 

Using (2), a similar expression can also be used to measure 
the average contribution of an input variable to the middle 
layer 

(3) 

where Ai is the average contribution of input variable i, nl 
and n2 are the number of nodes in the input layer (including 
bias) and the middle layer respectively. 

The use of WV-curves in optimizing the network configu- 
ration will be discussed in the later sections. 

v .  CASE STUDY 

A. Objective 

The objective of this study is to compare the genetic and 
nongenetic approaches in well log analysis using backprop- 
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TABLE I 

TEST DATA EXCEF-T CASE 6 WHICH CAN ACHIEVE ONLY 88% AT loo00 EPOCHS. E AND E-AVE REPRESENT THE NUMBER 
PERFORMANCE OF EACH NEURAL NETWORKS IN LITHOFACIES CLASSIFICATION. ALL CASES CAN ACHIEVE A RECOGNITION RATE OF 95% ON THE 

OF EPOCHS FOR A PARTICULAR RUN AND THE AVERAGE NUMBER OF EPOCHS FOR THE TEN DIFFERENT RUNS RESPECTIVELY 

Case Net RB R B ~  DT D T ~  IMP m+m2 IMP+RB+RB~ DT+DT~ E E-ave 
1 2-4-4 y Y 4982 4730 
2 5-5-4 y Y Y Y Y 1568 2830 
3 3-4-4 Y Y Y 1324 1940 
4 2-4-4 Y Y 3611 2680 
5 3-4-4 y Y Y 1238 1850 

4moc \OMIN 

Q A A 
A 

H w 
I------ 

0 
0 

0 
loo0 - 

1 2 3 4 5 

can 
Fig. 8. Minimum, maximum and average epochs taken to achieve a clas- 
sification accuracy of 95% for each case. Descriptions of each case refer to 
Fig. I. 

agation neural nets. The genetic approach is a two-stage 
process which involves the classification of log data into 
different lithofacies groups, and then porosity is estimated 
using both the log data, and the previously classified lithofacies 
information. The nongenetic approach involves only the use 
of well log data in porosity predictions. The predicted results 
are then compared to the core data (Le., actual values) using 
these two different approaches. 

B. Training and Test Data 

Two wells named Well A and Well B, from an oil-bearing 
reservoir located at Carnarvon Basin of North West Shelf in 
Australia, were used to provide log and core data. The data 
set consisted of gamma ray (GR), deep induction resistivity 
(ILD), bulk density (RB), sonic travel times (DT), porosity, 
and lithofacies information of four different kinds: mudstone 
(facies I ) ,  sandy mudstone (facies 2 ) ,  sandstone (facies 3) 
and carbonate cemented bed (facies 4). The data set from 
Well A (120 core and log data) was chosen to provide the 
training patterns. This training set was then used to predict 
lithofacies and porosity values using the log data from Well B 
(284 data) where core data (i.e., lithofacies and porosity) was 
also available for comparison purposes. 

The data set from Well A was carefully examined, and 
55 samples were identified as outliers. These outliers were 
defined as the unrepresentative samples, such as data extracted 
from fractured core plugs and data which are affected by thin- 
bedding of lithofacies which give rise to “shoulder effects” 

on log readings. Further examination showed that neither 
GR nor ILD could by itself discriminate the four lithofacies 
groups identified from the cores, which means that each 
lithofacies displayed a similar range of log values and resulted 
in large overlapping regions. Hence, the training data set was 
constructed using the remaining 65 patterns at Well A. In 
this study, nonlinear inputs were also generated using RB2, 
DT2 and RBDT (Le., acoustic impedance) or simply IMP. 
These nonlinear inputs were constructed for faster and better 
convergence purposes. Using R B ~  for example, effectively 
modified the transfer function in the next layer of nodes for 
this variable only. The cross-plot of RB and DT is displayed in 
Fig. 3. This figure shows that there is an inverse relationship 
between these two variables. The input and target training data 
at Well A were then normalised in the interval (0, 1) and (0.1, 
0.9) respectively, using simply the minimum and maximum 
values of the whole data set. The same scaling was also applied 
to the test data at Well B. 

Once the lithofacies patterns were determined, porosity was 
estimated using the genetic approach. The results were then 
compared with the nongenetic case using only the log data. 
Core data from Well B, consisted of 66 points of lithofacies 
and porosity, were used to test the performance of different 
approaches. Also, because DT related closely to lithofacies and 
porosity, the predicted lithofacies and porosity profiles were 
plotted with this log as the indicators of locations of geological 
bedding planes and porosity levels. 

C. Lithofacies Classijication 

In this section, we will discuss the use of WV-curves 
in optimizing the network used for lithofacies classification 
purposes, however, the same approach can be applied to other 
applications as well. 

The 65 training pattems from Well A, composed of RB, 
RB2, DT, DT2, IMP and known lithofacies information, were 
used to classify the log data from Well B into the four 
lithofacies groups. One output node was assigned to each 
lithofacies, and hence four output nodes were required. The 
resulting lithofacies was determined based on the largest 
response on the corresponding output node. Only one middle 
layer was considered in this example. The number of optimum 
input nodes was still uncertain because nonlinear inputs were 
used. The number of nodes present in the middle layer was 
also not known. Hence, some guess work was required at the 
start. For each experiment, the network was trained for 10,OOO 
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Fig. 9. Predicted Lithofacies Profiles at Well B. M is Mudstone, SM is Sandy 
Mudstone, S is Sand, and Ca is Carbonate Cemented Beds. Vertical axis is 
depth indicator. (a) Neural network results, (b) Sonic Log (usec/ft). 

TABLE 11 
PERCENTAGE CONTRIBUTION A, OF EACH INPUT VARIABLE 

(INCLUDING BIAS) IN DIFFERENT NEURAL NETWORKS 

Lithofacies Porosity Predictions 
Classification Nongenetic Genetic 

RB 30.2 29.3 11.4 
DT n/a 38.8 11.8 

DT.DT 29.3 n/a n/a 
IMP 30.3 31.4 29.4 

Lithofacies n/a n/a 37.3 
Bias 10.1 0.6 10.0 

epochs. The 66 test data from Well B were also used to record 
the highest recognition rate (%Reco) during training phase. 

In this study, the first try was using only the two independent 
inputs (Le., RB and DT). The results were optimised at 4982 
epochs using four middle layer nodes, and the %Reco was 
95% on the Well B data set. These results were then used to 
provide a minimum baseline level of performance to achieve. 

The second try was using the five linear and nonlinear inputs 
(Le., RB, RB2, DT, DT2, and IMP) and five middle layer 
nodes (Le., 5-5-4). The results were maximum at 1568 epochs, 
and the %Reco was 95% on the Well B data set. Compared 
to the previous experiment, these two networks achieved the 
same amount of accuracy, however, the results converged at 
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Fig. 10. Histograms of core and predicted porosity values. 

911 

I 

less epochs. These showed that creating nonlinear inputs in 
network training do not necessarily give extra information in 
the input space, but using these inputs can certainly reduce 
the training time by a significant amount. The WV-curves 
for 5-5-4 configuration at 1568 epochs are shown in Fig. 4. 
These curves showed the relationships between the logs and 
the lithofacies groups as displayed in Fig. 3. For example, 
the output value at facies 3 (i.e., sandstone) was high when 
the middle layer unit 1 gave a high value [Fig. 4(b)]. This 
happens when DT was also high, and that means DT has a 
positive contribution to sandstone as shown in Fig. 3. 

When two WV-curves are similar, there are two diamet- 
rically opposite possibilities. Either both are necessary, or 
we can dispense the one with a smaller contribution to 
the network. An example of the former case occurs in the 
exclusive-or (XOR) problem, where the weights of both inputs 
would have identical or similar sets of values [6], but both 
are required. The omission of one input would render the 
network invalid, however, the addition of the input values 
would produce correct results since these signals are combined 
linearly in the network. An example of the latter is the case 
of X1 and X12 for instance, where one of the inputs could 
usually be omitted. In actual use, neither case is usually as 
clear cut as this, hence our following experiments to discover 
the best means to decide what to do based only on the 
performance and WV-curves. 

In Fig. 4(a), the weights of RB and RB2, and DT and DT2 
to the middle layer have almost the same values. That means 
RB and RB2 (or DT and DT2) can either be replaced by 
their sum, or one of them omitted. Note that in this figure, 
the actual weight values at nodes 2 and 5 from all inputs 
are nearly the same. This also shows in Fig. 4(b) where 
middle layer nodes 2 and 5 contribute nearly identical amount 
to all the four output nodes. Therefore, one node can be 
removed from the middle layer, and a 3-4-4 configuration (i.e.. 
RB+RB2, DT+DT2, IMP) was used in the next experiment. 
The results were maximum at 1324 epochs with the same 
%Reco @e., 95%). The WV-curves for this configuration are 
shown in Fig. 5. In Fig. 5(a), the WV-curves for IMP and 
RB+RB2 are nearly the same. Hence the further simplification 



918 

5 1 0 1 5 2 0 2 5 3 0 3 5  

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 33, NO. 4, JULY 1995 

5 1 0 1 5 2 0 2 5 3 0 3 6  80 100 120 140 

Fig. 11. 
porosity profile (%) by (a) genetic approach, (b) nongenetic approach. (c) Sonic log (usec/ft). 

Comparisons of neural network-derived porosity profiles at Well B. Diamonds indicate core porosity. Vertical axis is depth indicator. Predicted 

was performed using IMP+RB+RB2 and DT+DT2 (Le., 2-4- 
4), the results converged at 3611 epochs. 

The other alternative in network simplification is used by 
discarding the input with smaller contribution to the network. 
In Fig. 4(a), RB and RB2, and DT and DT2 had similar 
WV-curves. By comparing Ai’s using (3), RB and DT2 
contributed more than RB2 and DT respectively. Therefore 
another network of 3-4-4 was tested using RB, DT2, and IMP. 
The results of this network converged at 1238 epochs with 
the same %Reco. The WV-curves are displayed in Fig. 6. 
In Fig. 6(a), RB and IMP had similar WV-curves, and IMP 
contributed more than RB. Therefore, a network of two inputs 
(Le., DT2 and IMP) was further tested but the highest %Reco 
was only 88% on Well B data set within the 10000 training 
epochs. 

Fig. 7 shows the derivation relationships of the six cases. 
Each of these cases was done for ten runs using different initial 
random weights. A summary of these experiments is plotted 
in Fig. 8 and is also tabulated in Table I. Fig. 8 shows the 
minimum, maximum and average epochs taken to achieve the 
same classification accuracy (i.e., 95%) for all the ten runs. 
Note that Case 6 could only achieve a maximum accuracy of 
88% in loo00 epochs for all runs. Table I shows the epochs 
for one set of runs, and is used in Figs. 4 to 6 displaying the 
WV-curves. The final column shows the average number of 
epochs which is also displayed in Fig. 8. Case 1 performed 

the least well on average, followed by the better Cases 2 and 
4, and then Cases 3 and 5. Case 2 shows that providing extra 
preprocessed information (i.e., nonlinear inputs) to a network 
can increase its learning speed by reducing the number of 
epochs taken to reach a desired classification level. Case 4 
shows that combining (or adding) all three inputs (Le., RB, 
RB2, and IMP) which were similar on WV-curves did not 
particularly improve average performance. Case 3, however, 
shows that some combination of inputs of this nature can 
improve performance. Case 5 shows that keeping only the 
larger of a pair of similar inputs produced the best result, 
implying that the pair of input variables were dependent (we 
knew this already but have now shown this behaviour). Finally, 
Case 6 shows that removing one of a pair of independent inputs 
will adversely impact on performance (refer to our earlier 
discussion on the XOR problem). 

The Case 5 results were used as the final configuration since 
it took the least epochs. The predicted lithofacies profile is 
displayed in Fig. 9 with the DT log at Well B. The results 
showed that the lithofacies profile was highly correlated with 
the sonic log. The contribution, Ai, of each input log to the 
network is listed in Table I1 using (3). 

D. PorosiQ Prediction 

The training data set in prediction of porosity values from 
well logs was the same as the one for lithofacies classification, 
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except lithofacies information was used as an extra input 
variable, and the core porosity values as target data. The 
inputs used in porosity predictions were RB, DT, IMP, and 
lithofacies. One output node (Le.. porosity) was used to 
develop the network configuration, and three middle layer 
nodes were found to produce the best results by using some 
statistical measurements such as correlation coefficient and 
mean-square-error (MSE). The Well B data set was also used 
during each epoch in order to prevent over-fitting. The network 
was trained for loo00 epochs, and the results converged at 
2345 epochs with a minimum MSE of 0.0016 and a correlation 
coefficient of 0.94. 

The nongenetic approach used only RB, DT, and IMP as 
input variables. The network optimised using two middle layer 
nodes (i.e., 3-2-1 configuration). The MSE did not reduce 
below 0.01 within loo00 epochs. The correlation coefficient 
was only 0.70. The lithofacies information provided additional 
separation of patterns of the input vector, and the removal 
of this variable from the training set resulted in averaging 
porosity values for all lithofacies. Hence, the MSE was high. 

The value of the output neuron was a continuous value 
which was rescaled to get the predicted porosity value. The 
predicted porosity values are displayed in Fig. 8 as histograms. 
The genetic-derived porosity produced a similar distribution 
to the core data. The nongenetic-derived porosity, however, 
tended to smooth out the profile and produces a high frequency 
content in the 2625% interval. The predicted porosity values 
are also shown in the form of a porosity log which is shown 
in Fig. 9(a) and (b) together with the core data and the 
corresponding DT log along Well B (Figs. 10-1 1). Once again, 
the results showed that the genetic-derived porosity profile was 
in a better agreement with the core data (correlation coefficient 
= 0.94 and also showed a better correlation with the DT 
log in terms of geological beddings, in comparison with the 
nongenetic-derived porosity values (correlation coefficient = 
0.70). The contribution of each input variable to the system 
is tabulated in Table I. It shows that lithofacies was a very 
important variable in porosity estimations. 

VI. CONCLUSION 

The results of porosity predictions using wireline log signals 
were compared for genetic and nongenetic approaches in 
reservoir characterization. The genetic approach involves the 
classification of log data into different lithofacies groups, 
and then porosity descriptions are carried out on a facies- 
by-facies basis, while the nongenetic approach uses only the 
log data, which means that effectively only one “averaged” 
lithofacies is considered. A technique for optimizing the 
network architecture has been proposed using the weight 
visualization curves. Based on the results obtained from the 
example problem, the major findings are listed below: 

1) The genetic approach in well log analysis can be imple- 
mented using a backpropagation neural network. 

2) Using nonlinear input reduces significantly the amount 
of training time required. 

3) Weight visualization curves are very useful in under- 
standing the trained neural network. 

4) The genetic approach provides superior porosity esti- 

Future studies on different formations will be required to 
mates to that based on the nongenetic approach. 

test the generality of the conclusions drawn. 
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